集合问题也称容斥原理,是国家公务员考试中出题频率最高的题型之一。本类试题基本解题思路如下:
1. 利用集合原理公式法:适用于条件与问题都可直接代入公式的题目。
(1)两个集合:︱A∪B︱=︱A︱+︱B︱-︱A∩B︱
(2)三个集合:
︱A∪B∪C︱=︱A︱+︱B︱+︱C︱-︱A∩B︱-︱B∩C︱-︱C∩A︱+︱A∩B∩C︱
2. 文氏图示意法:用图形来表示集合关系,变抽象文字为形象图示。
真题一:某服装厂生产出来的一批衬衫中大号和小号各占一半。其中25%是白色,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?( )
A.15 B.25 C.35 D.40
【解析】C。由题中可知大号衬衫、小号衬衫各50件,白色衬衫共25件,蓝色衬衫共75件。题中已告诉大号白色衬衫有10件,可知大号蓝色衬衫有50-10=40件,则剩余的蓝色衬衫全是小号的,共75-40=35(件)。
真题二:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。
A. 22 B. 18 C. 28 D. 26
【解析】A。本题采用图示法更为简单。如图:
故两次都及格的人数为32-4-4-2=22人。
真题三:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是( )。
A. 10 B. 4 C. 6 D. 8
【解析】B。两次考试都没有及格的人数=学生总数-两次都及格的人数-第一次未及格的人数-第二次未及格的人数=32-22-[32-22-(32-26)]-[32-22-(32-24)]=32-22-6=4。